

Where's Wayland?

Close to where I live

Also, in Fedora 21

What is Wayland?

What is Wayland?

● A protocol

● Libraries to support protocol implementation

● weston: A reference compositor

● xwayland: A rootless, nested X server

Principles

“Every frame is perfect”

 →Atomic commits

 →Avoid synchronization

Principles

“Client-side everything”

 Fonts

 Rendering

 Nested Windows

 Decorations

Principles

“Clients are isolated”

 →No global coordinates

 →No root window

 →No grabs

 →Privileged clients for special purposes

Principles

“Compositing at the core”

 →Merge compositor + display server

Principles

“Multiple interfaces”

 wl_seat

 wl_surface

 wl_data_device

 xdg_shell

Advantages

● Clean out cruft from X protocol

● Simplify protocol

● Sandboxing possible

● Possible to implement zero-copy

Concerns

● If the compositor crashes, your session goes

down

● Interoperability – will GNOME Wayland clients

be able to run under, say, Hawaii ?

● Driver support – the Nvidia driver does not

currently support Wayland

History

Earlier attempts:

● Fresco

● GGI

● DirectFB

History

● 2008: KMS, moving mode setting into the kernel

● 2008: Wayland started by krh (while at Red Hat)

● 2010: Initial GTK+ backend

● End of 2012: Wayland 1.0

● Early 2013: GNOME begins Wayland porting

● Fall 2013: 3.10, experimental Wayland support

● Spring 2014: 3.12, more complete support, using

xdg-shell

Wayland in GNOME

● GTK+ has a Wayland backend
● Gnome-shell / mutter is a Wayland compositor
● Using libinput
● Functionality moved from gnome-settings-daemon to gnome-shell:

– Display configuration

– Keyboard configuration

– Color calibration

● Gnome-shell exposes D-Bus APIs
– Display configuration

– Taking screenshots and screencasts

Current Status

GTK+ backend is pretty solid

Some remaining gaps:

● Drag-and-Drop

● Input configuration

● Wacom support

F21 Goal: day-to-day usable Wayland session

Why does this take so long?

● “No regressions”

● “Features”

● X had 30 years

● Keep X working

Thanks!

Where's Wayland?

On Route 20, outside of Boston. Not to far from where I
live, up here in Acton.

Close to where I live

On Route 20, outside Boston. Not too far from where I
live, up here in Acton.

Also, in Fedora 21

What is Wayland?

I'll start by giving a brief overview of the Wayland
ecosystem and the principles that have guided its
develoment

What is Wayland?

● A protocol

● Libraries to support protocol implementation

● weston: A reference compositor

● xwayland: A rootless, nested X server

The Wayland protocol defines what it means to be
either a Wayland compositor or a Wayland client.
Clients speak the protocol to the compositor over a
socket – much like X. The Wayland protocol is
specified in an XML file, and Wayland provides a tool
that can generate code from the XML description.

Clients normally don't implement the protocol
themselves; instead they use toolkits, such as QT or
GTK+. The toolkits don't implement the protocol
entirely on their own either, they use the wayland
libraries that help with this task.

I'll talk more about what Wayland is in GNOME, later.

Principles

“Every frame is perfect”

 →Atomic commits

 →Avoid synchronization

Frame here means the screen contents that get drawn
for an individual screen refresh – those typically
happen every 16 milliseconds.

This does not mean that every frame is actually
perfect, but rather that the protocol is designed in a
way that makes it possible to achieve animation,
resizing, etc without any glitches.

Atomic commits mean that a client attaches all the
ingredients needed for the next frame: buffers,
transformations, opaque region, input region,
damage, etc to the surface, and then calls commit to
put it all in place at the same time. This is also
sometimes described as double buffering. The
important point is that the compositor always has a
full set of up-to-date data for each surface, and never
a mixture of old and new.

Principles

“Client-side everything”

 Fonts

 Rendering

 Nested Windows

 Decorations

Fonts were already client-side in X for the longest time
(nobody uses core protocol fonts anymore, and
fontconfig won over alternative approaches like
STSF long ago)

Rendering is also effectively client-side under X today.
Nobody uses the core X protocol to draw circles,
polygons or lines

Nested windows – rarely used in modern toolkits,
GTK+ has client-side windows that are implemented
in GDK

Decorations – this is the newest (and still somewhat
controversial) functionality to move to the client-side.
GTK+ introduced client-side decorations last year in
version 3.10. One big advantage of doing
decorations client-side is that we don't need any
synchronization between client and server rendering
anymore, e.g during window resizes.

Principles

“Clients are isolated”

 →No global coordinates

 →No root window

 →No grabs

 →Privileged clients for special purposes

This has always been one of the big problems with X –
it is very hard to isolate clients from each other if they
can just render on the root window and grab each
others keyboard input.

If you've read lwn's report on Jaspers Wayland status
update that he gave last week at Guadec in
Strasbourg, he had some impressive examples of
exploits like a key logger that records your password
while you unlock the lock screen.

Examples of operations that are open to every client
under X, but require a privileged client under
Wayland: screen shots, accessibility tools, input
methods

Sandboxing under X basically requires Xnest

Principles

“Compositing at the core”

 →Merge compositor + display server

In X, compositing was added as an afterthought to a
non-composited windowing system.

Under X, people quickly recognized that having the
window manager and compositing manager in
separate processes does not make much sense. All
X compositors nowadays are 'compositing window
manager'.

Merging the compositor,window manager and display
server into one simplifies things greatly, since there
is no longer a need to have protocol for
communicating between these two, and they can
share their state, instead of duplicating it in 2 (or
even 3) processes.

Principles

“Multiple interfaces”

 wl_seat

 wl_surface

 wl_data_device

 xdg_shell

These are just some examples, there are more
interfaces in the Wayland protocol (e.g. wl_pointer,
wl_keyboard, wl_touch).

The wl_ interfaces listed here are mandatory, the
xdg_surface interface is meant for desktop use
cases; IVI and embedded use cases don't use it.

The interfaces can be versioned independently, the
system is flexible enough to accommodate new
development and different user experiences (e.g. IVI
systems are generally not using xdg_shell, they have
their own shell. Maybe it would make sense to
maximize the speedometer, but...

This is similar in many ways to X extensions.

Advantages

● Clean out cruft from X protocol

● Simplify protocol

● Sandboxing possible

● Possible to implement zero-copy

Examples of cruft have been mentioned: core fonts,
rendering, multiple screens

Simplification: do away with all the
wm/compositor/display server protocol

Jasper showed some convincing examples last week
of X applications stealing passwords from the login
screen. There have been attempts at fixing these
problems in X, but the resulting security extensions
are unwieldy and cumbersome. You really want a
system that is designed with application isolation as
a goal from the start

Zero-copy: client allocated kernel buffer, passes it to
the compositor, who then uses it for rendering

Concerns

● If the compositor crashes, your session goes

down

● Interoperability – will GNOME Wayland clients

be able to run under, say, Hawaii ?

● Driver support – the Nvidia driver does not

currently support Wayland

With X, you can have a session limp along with the
display server, after the window manager crashed;
with Wayland, that is not the case – compositor and
display server are one, so if your compositor
crashes, your session goes down. This may be an
important different for us developers, but the
difference for end users is less important – if all your
windows suddenly loose your decorations, and you
can't switch focus anymore, most 'normal' people
would just go for the power button.

Interoperability will hopefully be less of a concern when
xdg-surface and xdg-shell interfaces settle down
(these have been very actively developed until now

The noveau driver works fine, but many people want to
use the proprietary driver. We are working with
Nvidia to get them to provide APIs that can be used
to implement Wayland compositors

History

Earlier attempts:

● Fresco

● GGI

● DirectFB

This is really the pre-history.
Fresco was an experimental system originally

developed by the X consortium in the early 90s.
Later renamed to Berlin and then to Warsaw

GGI is the general graphics interface (also early 90s)
was an attempt to get graphics into the kernel

Some of these projects had some success, but none
came close to replacing X

History

● 2008: KMS, moving mode setting into the kernel

● 2008: Wayland started by krh (while at Red Hat)

● 2010: Initial GTK+ backend

● End of 2012: Wayland 1.0

● Early 2013: GNOME begins Wayland porting

● Fall 2013: 3.10, experimental Wayland support

● Spring 2014: 3.12, more complete support, using

xdg-shell

 I've looked it up, we had an F10 feature called

KernelModesetting
Original motivation for kernel modesetting was better

boot experience, without jarring flicker. Plymouth was
started as part of the same effort

I remember seeing a rotating flowers demo over
Kristians cube wall, back in 2008 or 2009. I also
remember discussing client side decorations with
him – I was not at all convinced back then

When we got ready for the porting effort, we had a
coordinating meeting in Kristians kitchen (March
2013, he was still living in Cambridge at the time). It
was a bad snow day, I had to pick up Jasper and it
took us almost 2 hours to get into Cambridge
(normally a 35 minute ride)

Xdg-shell is an interface that aims to collect expected
functionality for a 'desktop toplevel window'

Wayland in GNOME

● GTK+ has a Wayland backend
● Gnome-shell / mutter is a Wayland compositor
● Using libinput
● Functionality moved from gnome-settings-daemon to gnome-shell:

– Display configuration
– Keyboard configuration

– Color calibration

● Gnome-shell exposes D-Bus APIs
– Display configuration

– Taking screenshots and screencasts

Switching back to technical details, lets look briefly at
the internals of Wayland in GNOME

I've already mentioned that GTK+ has a Wayland
backend – that was fairly easy, GTK+ has had a
frontend/backend split all along

Gnome-shell and mutter are of course the GNOME
compositor/window manager/desktop shell. This
code base has a winding history, and did not have a
clean frontend / backend separation. A lot more
refactoring was necessary here; since we want to
keep the X code paths working – starting over from
scratch would be much easier.

Libinput is shared with weston, Hans will talk about it
Gnome-settings-daemon used to do a lot of direct

interaction with the X server, for things like display,
keyboard, color configuration. All of that is moved
into gnome-shell.

Current Status

GTK+ backend is pretty solid

Some remaining gaps:

● Drag-and-Drop

● Input configuration

● Wacom support

F21 Goal: day-to-day usable Wayland session

Drag-and-drop will not be in place for f21; input has
gotten a lot better – acceleration and palm detection
are in libinput now; we don't have configuration for it
yet. Wacom support is being added to libinput as
well, but I am not 100% sure if it is realistic to get that
into F21 at this point. Go to Hans de Goede's talk
about the 'Wayland Input Status' this afternoon to
learn more !

Why does this take so long?

● “No regressions”

● “Features”

● X had 30 years

● Keep X working

We have a polished and well-working desktop, we
don't want to endanger that. If the Wayland port is a
success, users will not notice that they are not
running X.

We can't stop adding features and doing new
development – things like hi-dpi support, touch,
animations, etc are all happening in parallel to
Wayland porting.

In some areas X protocol and api are mixed up with
GTK+ API, and need to be detangled

Moving a lot of code around: things where previously
gnome-settings-daemon would talk to the X server
(eg to configure monitors), are now moved into
gnome-shell, which offers a d-bus api.

Keyboard handling also moves entirely into the
compositor.

Thanks!

